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Wave function of a Brownian particle
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Using the Hamiltonian of CaldirolfNuovo Cimentol8, 393(1941)] and KanaiProg. Theor. Phys3, 440
(1948], we study the time evolution of the wave function of a particle whose classical motion is governed by
the Langevin equatiomx-+ 7x=F(t). We show in particular that if the initial wave function is Gaussian, then
(i) it remains Gaussian for all time§j) its width grows, approaching a finite value whier-c, and(iii) its
center describes a Brownian motion and so the uncertainty in the position of the particle grows without limit.
[S1063-651X98)10111-3

PACS numbds): 05.40:+j, 03.65—w

One of the starting points for the theory of the Brownianfrom which Eq.(1) results as a consequence of the Hamilton
motion is the Langevin equation equations. Making the usual associatfpa —id/dx (in units
such thati=1), one then obtains the Scliinger equation

mx+ 77$<+Z—V=F(t), (1) ) B
X (s P(x,t)= —WWJreV[V(x)—F(t)x] P(X,1).
4
wherem is the mass of the particle; is a damping constant, @
V(x) is the potential acting on the particle, afdt) is a

Gaussian random force, obeying the relations This approach has been severely criticized by some au-

thors[4], but Caldirola and Lugiat5] have shown that, in
the case of the damped harmonic oscillator with a stochastic
force, it gives the same results as the more orthodox ap-
proach based on a master equation derived by elimination of
the degrees of freedom of the thermal reservoir. Their analy-
where ¢(t) is a function sharply peaked a0 and the sis can be generalized for an arbitrary potentiék) if one
overbar represents the average over noise. uses the Caldeira-Leggett modél to describe the interac-
The need to quantize such a system appears naturaltjon of the particle with its environment. One can then derive
when one studies, for instance, quantum electrodynamics ia quantum-mechanical Langevin equation for the position
cavities, the low-temperature behavior of Josephson junceperator of the particle with an operator-valued stochastic
tions or the effects of dissipation on quantum tunnelify  force [6]. The CK Hamiltonian can then be viewed as an
references sefl,2]). In the system-plus-reservoir approach effective one-particle Hamiltonian that, through the Heisen-
[1,2], one treats the system in which one is interested and iteerg equations of motion for andp, generates the Lange-
environment, the “reservoir,” as a closed composite systemyin equation forx. One should note, however, that because
applies the usual rules of quantization, and then eliminateg (t) is an operator in the Hilbert space of the environment,
the reservoir degrees of freedom. the wave function(x,t) is also an operator in that space
A more phenomenological approach consists in the quansince it is a functional oF (t). Therefore, in order to obtain
tization of the Caldirola-KanaiCK) time-dependent Hamil-  expectation values of operators defined in the Hilbert space
tonian[3] of the particle, one must know not only the wave function
¥(x,t) [7], but also the state of reservoir, as specified by its
density operator, which in turn determines the noise correla-
_" tion function ¢(t). [In practice, if one is not interested in
short-time effects, one can assume a white noise, ¢.&.)
=D §(t), whereD is a temperature-dependent coefficient
determined in accordance with the fluctuation-dissipation
*Electronic address: rmc@itp.ucsb.edu theorem] Interpreted this way, the Caldirola-Kanai approach

F()=0, F(OF{")=a(t—t"), )

2
Heo 7t ;_m+e“/‘[V(x)— F(t)x]
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to the quantum Brownian motion is akin to the quantum statéfhe second identity allows one to write the propagator as
diffusion picture proposed by Gisin and Percid], in

which a master equation for the density operatois re- w0

placed with a stochastic equation of motion for the state vec- G(x,t|x",t")= J (X, 1) g (X", 7" )dk, 12
tor [¢); the former is then recovered by averag|my y{ over -

the fluctuations. In what follows, we shall illustrate these

ideas by studying the evolution of a wave packet in the casi/herer= (1), 7'=(t’). _ _ .
V=0. Using the above result, let us investigate the time evolu-

In order to solve Eq(4) (with V=0), we first make the tion of the Gaussian wave packet

change of variable

P(x,0) = (27 g2) ~ Vg ¥140?, (13
1
T(t)= ;(1—e* "), (5) Performing the integration ovede in Eq. (12), one finds
Equation(4) then becomes m im[x—x'—f(7)]2
G(x,t|x",0)= — ex
2miT 27
'&tﬁ( ) L7 f(7)X| (X, 7) (6)
| — X, T)=| — =1 (7)X X, T),
or 2m gx* +il (T)X—ifz(r)], (14)

where
so that

F[—y n(1—y7)]
(1—y7)?

Equation(6) is the Schrdinger equation of a particle in a

f(r)=e?"F(t)= (@)

I/I(X,t)zf_o;G(X,HX',O)l/i(X,,O)dX,

time-dependent electric field, for which solutions can be 3 s ir |\
found the form of plane wavd®]. In fact, =(2m) ot mo
ip(7)x—ia(r m[x—f 2

d(x,7) =Nl ® ><exp[ _—4[m0241—(27i)1 +iI(T)x_if2(T)].
is a solution of Eq(6) providedp(7) and a(7) satisfy (15)

dp da p? The probability density is then given by

dr dr 2m

1 —f 2

The solutions of these equatiofand the corresponding W(X't)'z:—e)(p[_wl' (16)
wave function$ can be labeled by the initial value pf 7), V2mo(t) 20°(1)

which we denote b, h
where

pum=k+ [ Haar=kei(,  oa 20
0 o=\ s an

The spreading of the wave packet is the same one found in
[6,10] taking into account only the dissipation.
At first sight this result may seem paradoxical: Even in

k27'+2ijI(7")dT’+fTIZ(T')dT’
0 0

1
a’k(T):ﬁ

2 . . . .
_ z_rr: LKy (7)+ (7). (10b) the presence of a fluctuating force, the uncertainty in position
— [/y2\ _ 2_
[The initial value ofa(7) can be absorbed in the normaliza- (A%)qu= V(X9 = ()= o (t) (18)

tion constantN and so without lack of generality we may

takea(0)=0.] With N= (277)~ 2 one can easily verify that tends to a finite value wheti—«. However, it should be

noted that the above quantity measures the uncertainty in the
position of the particle with respect to the “center of mass”
of the wave packefx(t)), which cannot be determined pre-
cisely: According to Ehrenfest theorefx(t)) satisfies Eq.

(1) and so describes a Brownian motion. Therefore, there is a
. “classical” uncertainty in the position of the center of the
f_xlﬂk(X.T) W (x' 7)dk= 8(x—x"). (11b) \[/\ﬁ\]/e packet that, in the case of a white noise, is given by

| stxmend=sk-k), aa
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—  — D Ax=V{x®)— ((x))2=V(AX)2 + (AX)?,. 20
(AX)C|E <X>2_(<X>)2: ?[t_,}/—l(l_e_'yt)], < > (< >) ( )qu ( )Cl ( )
(19
. ] ] . ) ) ] In conclusion, | would like to emphasize that the whole
which, in contrast with the “quantum” uncertainty in the hoint of the above exercise is to show thavided fluctua-
position of the particle, does not “freeze” when- . _ tion effects are properly taken into accoptite CK approach

The above definitions of quantum and classical uncertaing, {q quantum Brownian motion can give the same results
ties are somewhat e}rtlf|0|al since they cannot be dwectlyas the more conventional approaches based on master equa-
compared with experimen(This would require not only an

. i ; ions or influence functionals.
ensemble of particles with the same initial state, which oné[O 50 uence functionals

could possibly manage to prepare, but also an ensemble of | thank L. Davidovich and C. A. A. de Carvalho for a
reservoirs in the same microstaté\s argued before, the cyitical reading of this paper. This work was supported by the
natural definition of the expectation value of an opera&®r cgonselho Nacional de Desenvolvimento Ciiot e Tecno-
(i.e., the one that can be compared with experimangiven |54ico (CNPQ and, in part, by the National Science Founda-
by (O) and so the uncertainty in the position of the particletion under Grant No. PHY94-07194.
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phasized that this result is derived under the assumption of a
white noise. For instance, in Sec. 7 of REt] the authors
show that whernm—0, (Ax)2~ln t whent—oo, in contrast to

the behavior predicted by E@19). This discrepancy occurs
because in their model for the reservoir the noise becomes
“colored” when T—0.]



