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Wave function of a Brownian particle

R. M. Cavalcanti*
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030
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Using the Hamiltonian of Caldirola@Nuovo Cimento18, 393 ~1941!# and Kanai@Prog. Theor. Phys.3, 440
~1948!#, we study the time evolution of the wave function of a particle whose classical motion is governed by
the Langevin equationmẍ1h ẋ5F(t). We show in particular that if the initial wave function is Gaussian, then
~i! it remains Gaussian for all times,~ii ! its width grows, approaching a finite value whent→`, and~iii ! its
center describes a Brownian motion and so the uncertainty in the position of the particle grows without limit.
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One of the starting points for the theory of the Browni
motion is the Langevin equation

mẍ1h ẋ1
]V

]x
5F~ t !, ~1!

wherem is the mass of the particle,h is a damping constant
V(x) is the potential acting on the particle, andF(t) is a
Gaussian random force, obeying the relations

F~ t !50, F~ t !F~ t8!5f~ t2t8!, ~2!

where f(t) is a function sharply peaked att50 and the
overbar represents the average over noise.

The need to quantize such a system appears natu
when one studies, for instance, quantum electrodynamic
cavities, the low-temperature behavior of Josephson ju
tions or the effects of dissipation on quantum tunneling~for
references see@1,2#!. In the system-plus-reservoir approa
@1,2#, one treats the system in which one is interested and
environment, the ‘‘reservoir,’’ as a closed composite syste
applies the usual rules of quantization, and then elimina
the reservoir degrees of freedom.

A more phenomenological approach consists in the qu
tization of the Caldirola-Kanai~CK! time-dependent Hamil-
tonian @3#

H5e2gt
p2

2m
1egt@V~x!2F~ t !x# S g[

h

mD , ~3!
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from which Eq.~1! results as a consequence of the Hamilt
equations. Making the usual associationp52 i ]/]x ~in units
such that\51), one then obtains the Schro¨dinger equation

i
]

]t
c~x,t !5H 2

e2gt

2m

]2

]x2 1egt@V~x!2F~ t !x#J c~x,t !.

~4!

This approach has been severely criticized by some
thors @4#, but Caldirola and Lugiato@5# have shown that, in
the case of the damped harmonic oscillator with a stocha
force, it gives the same results as the more orthodox
proach based on a master equation derived by eliminatio
the degrees of freedom of the thermal reservoir. Their an
sis can be generalized for an arbitrary potentialV(x) if one
uses the Caldeira-Leggett model@1# to describe the interac
tion of the particle with its environment. One can then der
a quantum-mechanical Langevin equation for the posit
operator of the particle with an operator-valued stocha
force @6#. The CK Hamiltonian can then be viewed as
effective one-particle Hamiltonian that, through the Heise
berg equations of motion forx andp, generates the Lange
vin equation forx. One should note, however, that becau
F(t) is an operator in the Hilbert space of the environme
the wave functionc(x,t) is also an operator in that spac
since it is a functional ofF(t). Therefore, in order to obtain
expectation values of operators defined in the Hilbert sp
of the particle, one must know not only the wave functi
c(x,t) @7#, but also the state of reservoir, as specified by
density operator, which in turn determines the noise corre
tion function f(t). @In practice, if one is not interested i
short-time effects, one can assume a white noise, i.e.,f(t)
5D d(t), where D is a temperature-dependent coefficie
determined in accordance with the fluctuation-dissipat
theorem.# Interpreted this way, the Caldirola-Kanai approa
6807 © 1998 The American Physical Society
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to the quantum Brownian motion is akin to the quantum st
diffusion picture proposed by Gisin and Percival@8#, in
which a master equation for the density operatorr is re-
placed with a stochastic equation of motion for the state v
tor uc&; the former is then recovered by averaginguc&^cu over
the fluctuations. In what follows, we shall illustrate the
ideas by studying the evolution of a wave packet in the c
V50.

In order to solve Eq.~4! ~with V50), we first make the
change of variable

t~ t !5
1

g
~12e2gt!. ~5!

Equation~4! then becomes

i
]

]t
c~x,t!5F2

1

2m

]2

]x2 2 f ~t!xGc~x,t!, ~6!

where

f ~t!5e2gtF~ t !5
F@2g21ln~12gt!#

~12gt!2 . ~7!

Equation~6! is the Schro¨dinger equation of a particle in
time-dependent electric field, for which solutions can
found the form of plane waves@9#. In fact,

c~x,t!5Neip~t!x2 ia~t! ~8!

is a solution of Eq.~6! providedp(t) anda~t! satisfy

dp

dt
5 f ~t!,

da

dt
5

p2

2m
. ~9!

The solutions of these equations~and the corresponding
wave functions! can be labeled by the initial value ofp(t),
which we denote byk,

pk~t!5k1E
0

t

f ~t8!dt8[k1I ~t!, ~10a!

ak~t!5
1

2m Fk2t12kE
0

t

I ~t8!dt81E
0

t

I 2~t8!dt8G
[

k2t

2m
1k f1~t!1 f 2~t!. ~10b!

@The initial value ofa~t! can be absorbed in the normaliz
tion constantN and so without lack of generality we ma
takea(0)50.# With N5(2p)21/2, one can easily verify tha

E
2`

`

ck* ~x,t!ck8~x,t!dx5d~k2k8!, ~11a!

E
2`

`

ck~x,t!ck* ~x8,t!dk5d~x2x8!. ~11b!
e

c-

e

e

The second identity allows one to write the propagator a

G~x,tux8,t8!5E
2`

`

ck~x,t!ck* ~x8,t8!dk, ~12!

wheret5t(t), t85t(t8).
Using the above result, let us investigate the time evo

tion of the Gaussian wave packet

c~x,0!5~2ps2!21/4e2x2/4s2
. ~13!

Performing the integration overk in Eq. ~12!, one finds

G~x,tux8,0!5A m

2p i t
expH im@x2x82 f 1~t!#2

2t

1 i I ~t!x2 i f 2~t!J , ~14!

so that

c~x,t !5E
2`

`

G~x,tux8,0!c~x8,0!dx8

5~2p!21/4S s1
i t

2ms D 21/2

3expH 2
m@x2 f 1~t!#2

4ms212i t
1 i I ~t!x2 i f 2~t!J .

~15!

The probability density is then given by

uc~x,t !u25
1

A2ps~ t !
expH 2

@x2 f 1~t!#2

2s2~ t ! J , ~16!

where

s~ t !5As21
t2~ t !

4m2s2. ~17!

The spreading of the wave packet is the same one foun
@6,10# taking into account only the dissipation.

At first sight this result may seem paradoxical: Even
the presence of a fluctuating force, the uncertainty in posit

~Dx!qu[A^x2&2^x&25s~ t ! ~18!

tends to a finite value whent→`. However, it should be
noted that the above quantity measures the uncertainty in
position of the particle with respect to the ‘‘center of mas
of the wave packet̂x(t)&, which cannot be determined pre
cisely: According to Ehrenfest theorem,^x(t)& satisfies Eq.
~1! and so describes a Brownian motion. Therefore, there
‘‘classical’’ uncertainty in the position of the center of th
wave packet that, in the case of a white noise, is given
@11#
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~Dx!cl[A^x&22~^ x̄&!25AD

h2 @ t2g21~12e2gt!#,

~19!

which, in contrast with the ‘‘quantum’’ uncertainty in th
position of the particle, does not ‘‘freeze’’ whent→`.

The above definitions of quantum and classical uncert
ties are somewhat artificial since they cannot be dire
compared with experiment.~This would require not only an
ensemble of particles with the same initial state, which o
could possibly manage to prepare, but also an ensemb
reservoirs in the same microstate.! As argued before, the
natural definition of the expectation value of an operatorO
~i.e., the one that can be compared with experiment! is given
by ^O& and so the uncertainty in the position of the partic
is given by
y

e

-
y

e
of

Dx[A^x2&2~^x̄&!25A~Dx!qu
2 1~Dx!cl

2 . ~20!

In conclusion, I would like to emphasize that the who
point of the above exercise is to show that,provided fluctua-
tion effects are properly taken into account, the CK approach
to the quantum Brownian motion can give the same res
as the more conventional approaches based on master e
tions or influence functionals.
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